FREMS™: Scientific Principles 1

FREMS™: What is it? 2

FREMS™: The Target 2

FREMS™: Action on the Biological Control Systems 3

- Vasomotor Action 3
- Release of VEGF and b-FGF 3
- Anti-inflammatory Action 3
- Tissue Repair 4
- Modulation of Muscle Tone 4
- Pain Modulation 4

Clinical Trials 5

FREMS™: Applications 6

FREMS™: How it is applied 6

Bibliography and Abstracts 7
FREMS™: Scientific Principles

Cells exchange information through a complex communication system based on the transduction of electrical signals and biochemical events by passing ions through channels in the cell membrane (fig.1).

![Cell membrane](image1)

fig. 1

Every cell and/or tissue has a certain resting membrane potential.

The ability to create a phasic depolarization event in a relatively short amount of time is called “excitability” and depends on the biological device that regulates transmembrane ions flux, by their type and density.

Generally the excitability of a cell/tissue is calculated in terms of an intensity/duration curve (fig.2) and the excitable cells have the ability to produce a recurring event, called “action potential” or “spike” that corresponds to an event which is always “identical”.

![Intensity/duration curve](image2)

fig. 2

There is always a refractory period after this spike during which the cell is not stimulated despite the fact that the same intensity is administered; it follows that there is a maximum characteristic frequency for every class of cell or tissue.

For example, the smooth muscle is immediately excited with stimuli below the perception threshold frequency of approximately 10 Hz, striated muscle at a frequency higher than 30 Hz, unmyelinated fibres at a frequency >150 Hz, etc.

The time that passes between one spike and another is a declaration of the ability of the membrane to repolarise itself after a depolarization event: this ability mainly comes from the inward flow of potassium from the outside of the cell (inward rectification).

The pathology disrupts the equilibrium of tissue and changes the excitability not only of the nerve cell, but also of other cell types, interconnected in various ways, such as muscle cells, gland cells, connective tissue, etc.

Another fundamental property of all biological tissues is adaptation: sequences of stimuli induce the modulation of the response threshold. The structural basis for this phenomenon also comes from the ionic properties of the membrane and especially from the types of ionic channels.

The most interesting element is that the adaptation reached by the functional unit (cell and/or tissue) is the final common pathway of all these interactions, regardless of the medium with which it has been reached.

It follows that electrical stimulation, because it has a direct effect on the transmembrane ionic channels, can induce functional changes to any cell/tissue system through the modulation of its response threshold.

The use of an electrical stimulation without any direct influence and neutral to analogue receptor signalling, allows the digital components of the intercellular information between connected systems be activated, provided that they are electrically active.

This can create manifestations and transformations in the innate potentials of the organism itself, bypassing hindrances that are interposed by the pathology in all its manifestations.
FREMS™: What is it?

Electricity is a sort of universal skeleton key for all biological functions. An electrical stimulation designed to pass through skin, with precise rhythms and sequences that vary in time and frequency is potentially capable of interacting with:

- Cutaneous receptors (touch, pressure, temperature, stabbing pain, and chemoreceptor) connected to fibres with high velocity conduction
- Free unmyelinated cutaneous nerve fibres (temperature, diffuse pain, inflammation and metabolism mediators)
- Smooth muscle fibres (blood vessels and myoepithelial cells of the glandular annexes)
- Striated muscle fibres below the dipole created by a pair of electrodes

FREMS™ (Frequency Rhythmic Electrical Modulation System), known also as “Lorenz”, which comes from the name of the manufacturer, involves the application of an electrical signal through small transcutaneous electrodes.

It is composed of sequences of electrical impulses (spikes), with a minimum amount of charge exchange, and a variable frequency and duration according to preset protocols.

The impulse amplitude is preset by the operator using a remote control at the maximum value according to the patient's sensitivity threshold of the stimulated tissue.

The system then modulates the maximum amplitude based on the ionic balance of the tissue beneath the electrodes, keeping it in constant equilibrium (biofeedback).

The impulse is characterized by an active phase and a rest phase, which ensure the ionic balance for the tissue involved in the process.

The sequences of impulses are conceived on the basis of the characteristics of the tissues to be enrolled in the programmed action and are able to carry out synchronisms and rhythms in the excitable structures by activating a functional “rehabilitation” mechanism in the area being treated.

Due to its fundamental characteristics, FREMS™ can influence subcutaneous functional structures by producing determined and repetitive events such as vasomotion, intended as the rhythmic pulsation of the vessels, through the involvement of the pre-capillary sphincter muscles of the microcirculation.

FREMS™: The Target

FREMS™ is the result of a research dedicated to realize a non pharmacologic system able to treat vascular and neurological diseases such as diabetic neuropathy.

FREMS™ is an effective and innovative approach in the treatment of diseases and complications in the following systems:

- Peripheral nervous system
- Vascular system
- Locomotor system
- Integumentary system

During the studies that were conducted for the development of FREMS™, some actions of the endothelial and smooth muscle cells of vessels were studied, mainly regarding the effects of simultaneous depolarization, vasomotion (fig.4), the release of nitric oxide (NO) and the production of angio genetic growth factors (figures 5 and 6).

FREMS™ can activate a functional “rehabilitation” mechanism to the area affected by the disease through the following actions:

- Functional reactivation of degenerated biological tissue due to metabolic decompensation
- Deactivation of symptomatic neuro-muscular feedback processes
- Mobilisation of inflammatory and pro-inflammatory factors
- Acceleration in the repair of damaged tissue
FREMS™: Action on the Biological Control Systems

The healing effects of FREMS™ occur through a direct and indirect action on the biological control systems and especially in the autonomic system.

FREMS™ has the following specific effects:

Vasomotor Action

Vasomotion is the rhythmic pulsating action of the smooth muscles of the vessels that regulate the activity of the microcirculation.

Changes in the perfusion velocity in the microcirculation during FREMS™, measured by Laser Doppler Flowmeter, demonstrate an induced vasomotor activity (fig.4b).

These figures show the increases in blood flow and their direct relationship with the sequences performed during the stimulation.

The vasomotor profiles of the microcirculation demonstrate a close correlation with the aerobic respiratory status of the tissue treated with FREMS™ (fig.4a). It is clear how the adrenergic and non-adrenergic vasomotor components are differently modulated during the stimulation sequences.

Release of VEGF and b-FGF

Several experimental studies have shown the possibility of promoting the release and synthesis of VEGF (Vascular Endothelial Growth Factor) and other angiogenetic growth factors through the application of electrostimulation to smooth muscle cells, striated muscle cells and endothelial cells, in vitro or in vivo.

FREMS™ can greatly increase the release of plasmatic growth factors in human being, as shown in the studies conducted over the past few years by the Lorenz Research Centre at “Luigi Sacco” University Hospital in Milan.

Analysis of systemic blood samples from healthy subjects, taken before, during and after FREMS™, showed a significant increase in the level of VEGF and b-FGF (basic-Fibroblast Growth Factor) (fig.5-6).

Anti-inflammatory Action

The inflammatory response is often a physiological response to defend and protect
against agents that alter the biological and biochemical equilibrium of the body. The inflammatory response causes edema, pain and provokes dilation of the capillaries. The permeability of the capillary walls increases, allowing plasma to penetrate into the extracellular spaces. The liquid accumulates between the cells and causes swelling.

FREMS™ stimulates vasomotion, increases the drainage of the lymphatic system, reduces the swelling and triggers the immunological response to reduce the levels of pro-inflammatory cytokines. At the same time, it promotes the blood flow supplying oxygen and nutritional factors.

In diabetic patients with micro angiopathy, suffering from vessel endothelial inflammation, the high levels of circulating TNF-α and IL-2, significantly decrease after FREMS™ treatment (fig.7).

![Histogram showing TNF-alfa serum levels in diabetic patients with micro angiopathy](image)

Modulation of Muscle Tone

Thanks to its modulation action both from the reflex activity and the cortex excitability, FREMS™ is able to significantly intervene on the motor efferent nerve.

Modulation of the contraction processes can be obtained by means of this mechanism which may result from direct trauma to the locomotor or nervous system.

The ability to modulate the excitability of the motoneurons offers the possibility to treat pathologies such as dystonic disorders, spasticity or painful muscular syndromes.

Pain Modulation

FREMS™ can produce a functional ablation effect similar to that of analgesic electro stimulation. The application of electrodes to the skin is followed by a long lasting anaesthesia-analgésia effect. It can be compared to the effect due to the induction of a refractory period from the neurons of the spinal ganglion. FREMS™ is not just limited to short term excitability phenomena such as the induction of the refractory period, but it also induces the promotion of signal/noise filtering phenomena through a medium term conditioning of the excitability of the pain propagation systems.

In clinical terms, the same painful event, as a localized inflammatory process or a mechanical conflict on an algogenic structure, is more easily supported by a structure that has a large signal/noise extraction capability. Furthermore FREMS™ can also reduce the source of peripheral pain by means of the previously mentioned mechanisms.

Tissue Repair

FREMS™ encourages myocyte growth and the release of angiogenetic growth factors. The reduction of the haematatic effusion and the vascularization of the damaged muscle also reduce the state of ischemia; the tissue repair induced by FREMS™ will be more effective and prevent the formation of scar tissue the earlier the inflamed part are treated.

For muscular injuries, FREMS™ can be used immediately after the trauma when the bleeding has stopped.

For cutaneous ulcers, FREMS™ can be used to accelerate the repair of damaged tissue both through the supply of oxygen and nutritional factors induced by vasomotion and through the release of growth factors.
Clinical Trials

The San Raffaele Hospital in Milan and the University Monteluco Hospital in Perugia conducted a multicentric, randomized, double-blind clinical trial on painful diabetic neuropathy.

The results of the trial, published in the international journal “Diabetologia”, showed a significant recovery in the functionality of sensory and motor nerve fibres, monitored by means of electroneurography (figures 8b and 8c), monofilament and biotensiometry. There was also a notable result in the reduction of night pain (fig.8a) as well as an improvement in the microcirculation (fig.8d), measured by Laser Doppler Flowmeter.

Clinical tests performed at the L. Sacco University Hospital in Milan evaluated the efficacy of the FREMS™ system in a wide range of acute and chronic vascular, neurological and orthopaedic diseases. Moreover, it was shown a significant improvement in the microcirculation as well as a reduction in swelling and pain.

Other clinical trials are still in progress at Universities and Hospitals in the Neurological, Orthopaedic and Vascular fields which have shown the efficacy of FREMS™ in different clinical environments and in acute and chronic pathologies.

An open study conducted at the University of Udine concerning the treatment of diabetic peripheral arterial disease shows that FREMS™ achieves considerable effects on improvement of oxymetric values and pain free walking distance.

A double-blind study conducted at the University of Verona compared the application of FREMS™ in Myofascial Pain Syndrome with the application of TENS and showed that FREMS™ is more effective in the short term reduction of the pain and mostly in the medium term by supposing its intervention in the basic mechanism of the pain.

A multicentric study of the application of FREMS™ in the treatment of shoulder pain showed its effectiveness in improvement of symptoms.

Other studies on muscle injuries in athletes have demonstrated a better functional recovery of the treated area compared with conventional physical therapies, showing a substantial improvement in scarring after the injury without relapsing.

Some open studies on upper motoneurone syndrome have shown evidence of the reduction in spasticity and an improvement in the physiotherapeutical approach.

Ongoing clinical trials pertaining to the application of FREMS™ in ulcers and bedsores have demonstrated the efficacy of FREMS™ in tissue regeneration, even in the presence of serious metabolic pathologies such as diabetes mellitus.
FREMS™: Applications

FREMS™ activates a localized vasomotion system that mobilizes the inflammatory and pro-inflammatory cytokines located in the interested area.

Also by directly intervening on the small nerve fibres, it modulates the transmission of pain and the overall symptomatology. The supply of nutrients and the release of growth factors support tissue reconstruction and repair.

Some of the vascular pathologies that can be treated are:

- Peripheral Neuropathy
- Peripheral Angiopathies
- Ulcers
- Bedsores

FREMS™ modulates the activity of the peripheral nervous system by activating a biological-functional healing process.

It also allows a better physiotherapeutical approach and significantly reduces the localized pain.

Some of the neurological pathologies that can be treated are:

- Spasticity (as an aid in functional rehabilitation)
- Focal dystonias
- Myofascial Pain Syndrome
- Algodystrophies

FREMS™ acts both on the symptomatic level and on the related biological processes in different clinical areas and, depending on the specific pathology, can intervene with different effects both in the removal or reduction of the pathogenetic mechanism, and on the secondary symptoms of the pathology itself.

Some of the orthopaedic pathologies that can be treated are:

- Inflammation of the carpal tunnel
- Bursitis
- Perisynovitis
- Edematous states

FREMS™: How it is applied

FREMS™ consists in the application of an electrical signal that is transmitted through transcutaneous electrodes. These dedicated and specific FREMS™ electrodes must be positioned according to defined rules for every specific treatment and tested protocols for each application. The treatment involves a series of 30-minute daily sessions over a few weeks that can be performed both at hospital and at home.

FREMS™ is administrated through the device Aptiva™ which is equipped with two or four desynchronized and independent channels. According to the options and versions, Aptiva™ allows various applications such as the electro-myographic biofeedback and electro-neurographic analysis through the measuring of the nerve conduction and the F Wave and H Reflex.

The technology and the flexibility of these medical devices allow FREMS™ to be simply and safely applied by properly trained doctors and medical staff.

FREMS™ technology is developed and produced by Lorenz Biotech™ S.p.A., a company specialised in the development of Medical Devices dedicated to neuro-vascular and physical rehabilitation.

Lorenz Biotech™, its products and technologies are certified according to European and North American standards and are protected by European and international patents.
Bibliografia ed Abstract

Studi di Base

Effetti del sistema di neuromodulazione transcutanea (FREMS) sull'ecicitabilità della corteccia motoria in soggetti sani
SIRN Venezia Aprile 2006

M. Barrella, R. Toscano, M. Goldoni, M. Bevilacqua
Frequency Rhythmic Electrical Modulation System (FREMS) on H-reflex amplitudes in healthy subjects
EUR MED PHYS 2006 (In Press)

M. Barrella
Neuromodulazione FR.E.M.S.: rilievi elettrofisiologici e studio dell’azione sul microcircolo
La Malattia di Parkinson
Sirmione Settembre-Octobre 2005

M. Bevilacqua, R. Toscano, V. Righini, A. Zanella, T. Vago
Ruolo del Vascular Endothelial Growth Factor (VEGF) nelle fratture vertebrali dell'uomo.
6th European Congress of Endocrinology
Lyon April 2003

G. Norbìa, T. Vago, G. Baldi, V. Valdes, M. Bevilacqua
Nuovo approccio tecnologico finalizzato alla modulazione Neuro-Endocrina del sistema vascolare
2nd International Congress STRESS 2000
Milan December 2000

Physical Therapy

M. Baldo, A. Volpe, D. Varotto, M. Murgia, L. Sandi
Uso della neuromodulazione FREMS nelle tendinite dell’Achilleo
SIMFER Catania 2005

M. Scaturro, S. Gervasi, P. Santangelo, A. De Palo, D. De Cicco
Il trattamento della spasticità con le correnti di Lorenz. Proposta di lavoro
SIMFER Catania 2005

A. Giusti, G.R. Riccardi, M. Coccia, G. La Galla, E.M. Magiera, M.G. Ceravolo
Il ruolo della FREMS nel trattamento della spalla dolorosa dopo ictus: descrizione di un caso clinico
SIMFER Catania 2005

F. Colonna
Approccio terapeutico nella patologia del 1° neurone di moto
La Malattia di Parkinson
Sirmione Settembre-Octobre 2005

Fabio Colonna
La FREMS nella gestione dell’ipertono e del dolore nell’emipliegico
SIRN Ancona Maggio 2005

Paolo Milia, Federico Scarponi, Tito Rastelli, Letizia Gonnelli, Marco Caserio, Mario Bigazzi
Utilizzo della Neuromodulazione FREMS nell’ipertono spastico. Un anno di esperienza.
SIRN Ancona Maggio 2005

Baldo M, Volpe A, Varotto D, Murgia M, Sandi L
Use of Neuromodulation FREMS on Achilles Tendonitis
XIV International Congress on Sports Rehabilitation and Traumatology Bologna 2005

Guggi S, Cavina U
Experience of a novel transcutaneous neuromodulation as first approach to muscle injuries.
XIV International Congress on Sports Rehabilitation and Traumatology Bologna 2005

Taddio N
From Carpentry to Biology: is it possible to enhance muscle regeneration? Clinical results of a randomized controlled study with an innovative approach to the physical therapy of muscle injuries.
XIV International Congress on Sports Rehabilitation and Traumatology Bologna 2005

S. Farina, M. Casarotto, M. Benelle, M Tinazzi, A. Fiaschi, M. Goldoni, N. Smania
A randomized controlled study on the effect of two different treatments (FREMS and TENS) in myofascial pain syndrome.
EUR MED PHYS 2004; 40:293-301

F. Scarponi, T. Rastelli, P. Milia, F. Sonaglia, L. Gonnelli, M. Caserio
Utilizzo di una nuova terapia di neuromodulazione, Lorenz-terapia, nella riabilitazione di pazienti con ipertonia post-ictale: progetto di studio ed esperienze preliminari
EUR MED PHYS 2004; Suppl. 1 to No. 3:155-6

Ipertono spastico nell’emipliegico: il ruolo della Lorenz terapia
EUR MED PHYS 2004; Suppl. 1 to No. 3:457-8

S. Farina, N. Smania, M. Casarotto, M. Benelle, M. Goldoni, A. Fiaschi
Effetti terapeutici del trattamento con frequency modulated neural stimulation (F.R.E.M.S.) in pazienti affetti da sindrome dolorosa miofasciale
EUR MED PHYS 2004; Suppl. 1 to No. 3:418-20

A. Masini, A. Momoli, F. Novelli, M. Salvi, V. Sessa
Nuovi orizzonti nel trattamento conservativo della spalla dolorosa: studio multicentrico sull’utilizzo della FRE.M.S. (Frequency Modulated Neural Stimulation), Lorenz Therapy™
EUR MED PHYS 2004; Suppl. 1 to No. 3:433-5

N. Taddio
From Carpentry to Biology: an innovative approach in the treatment of the muscular lesions: results of preliminary studies in a new controlled study
The rehabilitation of Sports Muscle and Tendon injuries-Milano April 2004
F. Combi
Application of novel neuromodulation for skeletal muscle regeneration following chronic fibrosis process.
The rehabilitation of Sports Muscle and Tendon injuries-Milan April 2004

M. Baldo, A. Volpe, D. Varotto, M. Murgia, L. Sandi
Application of a Novel Neuromodulation Therapy on Tendon injuries and tendinitis.
The rehabilitation of Sports Muscle and Tendon injuries-Milan April 2004

A. Masini, A. Momoli, F. Novelli, M. Salvi, V. Sessa
Nuovi orizzonti nel trattamento della spalla dolorosa: studio mult centrico
7° Corso Internazionale di Ortopedia, Biomeccanica e riabilitazione sportiva
Assisi Novembre 2003

M. Bevilacqua, L. Baruffaldi, L. Foddis, R. Toscano, G. Baldi, T. VagoV. Righini, A. Zanella
Increase of Vascular Endothelial Growth Factor (VEGF) and decrease of pain by Electrical Stimulation with High Variability in Frequency and Amplitude. A clinical study in osteoporotic patient with vertebral fractures
Calculated tissue Vol. 72 N°4 April 2003

Neuro-Vascular

Neuromodulazione a scopo vasodilatatorio in arteriopatia: interim results
V Congresso nazionale Associazione Italiana Ulcere Cutanee AIUC
Napoli, Novembre 2006

A.M. Puccio, R. Puce, G. Oltremarini, G. Devalle, C. Zocchi, R. Caprioli
Valutazione preliminare della FREMS (Frequency Rhythmic Electrical Modulation System) nelle lesioni cutanee a confronto con le medicazioni avanze.
V Congresso nazionale Associazione Italiana Ulcere Cutanee AIUC
Napoli, Novembre 2006

R. Da Ros, C. Vitale, R. Assaloni, A. Ceriello
Diabetology Service, University of Udine, Italy
Neuromodulation FREMS in the treatment of diabetic peripheral arterial disease
42nd Annual Meeting of the European Association for the Study of Diabetes
Copenhagen Sept. 2006

M. Conti, E. Peretti, G. Cazzetta, L. Folini, C. Vermigl, G. Galimberti, L. Scionti, E Bosi
Frequency modulated electromagnetic neural stimulation enhances cutaneous microvascular perfusion in patients with diabetic neuropathy
42nd Annual Meeting of the European Association for the Study of Diabetes
Copenhagen Sept. 2006

D. Sinagra, D. Grasso, F. Fasulo, F. Brighi no.
Variazione elettrofisiologica determinata dalla terapia FREMS in pazienti affetti da neuropatia diabetica agli arti inferiori.
SID Torino Maggio 2006

R. Da Ros, C. Vitale, R. Assaloni, A. Ceriello
Applicazione della Neuromodulazione FREMS nei pazienti con arteriopatia periferica
SID Torino Maggio 2006

D. Ciancia, D. De Benedictis, E. Nicoletti, A. Nicoletti
La terapia FREMS (Frequency Modulated Electro-Magnetic Neural Stimulation) nel trattamento delle ulceri diabetiche
SID Torino Maggio 2006

Lesioni ulcerative diabeteche e da decubito: progetto pilotaper il trattamento integrale ambulatoriale e territoriale includendo stimolazione elettrica con frequenza e ampiezza modulata
(FREMS: Frequency Modulated Electro – Magnetic Neural Stimulation)
SIGG Firenze Novembre 2005

D. Ciancia, D. De Benedictis, E. Nicoletti
Ulcer plantare diabetica trattata con un’innovativa terapia FREMS (Frequency Modulated Electro–Magnetic Neural Stimulation)
SIGG Firenze Novembre 2005

M. Massari, A. Zanella, P. Desideri, G. Rando, A. Wiel Marin
Chronic constipation: results of a clinical observation in the use of FREMS (Frequency Modulated Electromagnetic neural stimulation) therapy. Pilot study
UEGW Copenhagen ottobre 2005

M. Conti
L’elettroneuromodulazione nella neuropatia diabetica
La Malattia di Parkinson
Sirmione Settembre-Ottobre 2005

D. Sinagra, B. Grasso, F. Fasulo, F. Brighino
Efficacia della terapia Lorenz sulla neuropatia diabetica sensitiva periferica del paziente diabetico
AMD Genova Maggio 2005

M. Bevilacqua, M. Barrella, V. Valdes, R. Toscano, L. Domínguez
Miglioramento dei parametri funzionali del nervo sensitivo e motorio nel paziente con neuropatia diabetica dolorosa mediante un nuovo sistema di neuromodulazione ad impulsi.
AMD Genova Maggio 2005

E. Bosi 1, M. Conti 1, C. Vermigli, A. Ciavarella 3, M. Bevilacqua, G. Galimberti, G. Cazzetta, D. Cartelli, E. Peretti, L. Scionti 2.
Trattamento della Neuropatia Diabetica dolorosa mediante elettrostimolazione transcutanea a modulazione di frequenza: risultati di uno studio clinico mult centrico controllato.
AMD Genova Maggio 2005

Bosi E, Conti M, Vermigl C, Cazzetta G, Peretti E, Cordoni MC, Galimberti G, Scionti L.
Effectiveness of frequency-modulated electromagnetic neural stimulation in the treatment of painful diabetic neuropathy.
Diabetologia. 2005 Apr 15;

M.S. Aliquò, N. D’Arpa, B. Napoli, F. Conte, G. Bufera, S. Morello, M. Vallone
Terapia Lorenz in pazienti diabetici e non diabetici con ulcere degli arti inferiori.
AMD Genova Maggio 2005
D. Ciancia, D. De Benedictis, E. Nicoletti
Il piede diabetico: caso clinico di un paziente affetto da ulcerapatiente affetto da ulcera neuropatica, ischemia ed infetta trattata con FREMS (Frequency Modulated Neural Stimulation)
Torino Aprile 2005

M. Barrella
Principi biofici, meccanismi d'azione e rilievi elettrofisiologici delle correnti impiegate nella Neuromodulazione: esperienze su un metodo innovativo di stimolazione transcutanea a modulazione di frequenza e durata degli impulsi. Applicazione sul microcircolo
Il diabete e le malattie neurologiche invalidanti.
Orvieto Maggio 2004

M. Bevilacqua
Lorenz Therapy: un nuovo approccio alle neuropatie e vascolapatie periferiche
Orvieto Maggio 2004

L. Scionti, E. Bosi, C Vermigli, M Conti, G. Cazzetta, G. Galimberti, A. Zanella
Il trattamento della neuropatia diabetica sensitiva e motoria. Risultati di un trial controllato multicentrico italiano sulla Lorenz Therapy
Orvieto Maggio 2004

V. Provenzano, M. Fieres, V. Aiello, A. Di Noto, A. Scarsonne, L. Perna
Impiego dell’elettroterapia Lorenz nel piede diabetico: la nostra esperienza
Il diabete Marzo 2004 supp. Vol 16 n°1

M. Bevilacqua, M. Barrella, R. Toscano, E. Chebat, A. Zanella
Gravi disturbi della vasomozione in diabetic di tipo 2 neuropatici: miglioramento dell’ampiezza e diminuzione della frequenza della vasomozione dopo applicazione di una stimolazione nervale in modulazione di frequenza.
Il diabete Marzo 2004 supp. Vol 16 n°1

Luciano Scionti
La terapia della neuropatia diabetica
Il diabete suppl. n3 2004

G.A. Checchia, M.G. Facchini, M. Goldoni, B. Miccolli, N. Cantaforda, B. Scappini, M. Balboni, A. Santoro
Lorenz terapia™ nel trattamento della neuropatia uremica (NU): risultati di uno studio randomizzato controllato in doppio cieco
EUR MED PHYS 2004;40(Suppl. 1 to No. 3):410-3

E. Bosi, M. Conti, G. Galimberti, C. Vermigli, G. Cazzetta, L. Piemonti, L. Scionti
sicurezza ed efficacia di una nuova elettrostimolazione transcutanea nella terapia della neuropatia diabetica dolorosa.
Il diabete Marzo 2004 supp. Vol 16 n°1

Scionti L., Conti M., Vermigli C., Galimberti G., Cazzetta G., Bosi E.
NEURODIAB, Resensburg, Germany

M. Bevilacqua, M. Barrella, R. Toscano, V. Righini, E. Chebat, V. Valdez, A. Zanella.
Disturbances of Vasomotion in Diabetic (Type2) Neuropathy: Increase of Vascular Endothelial Growth Factor, Elicitation of Sympatetic Efflux and Synchronizatin of Vascular Flow(Vasomotion) during Frequency Modulated Neural Stimulation (FREMS).
ENDO 2004 New Orleans

E. Bosi, M. Conti, G. Galimberti, C. Vermigli, G. Cazzetta, L. Piemonti, L. Scionti
Effectiveness of a Novel Frequency Modulated Neural Stimulation in the treatment of painful peripheral neuropathy.
American Society of Diabetes June 2004 Orlando (USA)

The Lorenz Therapy: a new tool in the treatment of uremic neuropathy
European Dialysis and Transplant Association Lisboa May 2004

E. D’Ugo, M. Squadronale, A. D’Aurizio
Un nuovo approccio al trattamento della neuropatia diabetica dolorosa degli arti inferiori: La Terapia Lorenz
XIII Congresso Interregionale di Diabetologia, Abruzzo- Molise Termoli Ottobre 2003

M. Pupillo, D. Antonucci, A. Minnucci, A. De Luca, N. Tano
Trattamento della Neuropatia diabetica con Terapia Lorenz
XIII Congresso Interregionale di Diabetologia, Abruzzo- Molise Termoli Ottobre 2003

M. Pietrogrande
Le complicanze agli arti inferiori della sindrome crioglobulinemica: nuove prospettive terapeutiche.

E. Turrisi, M. Sciaraffa, A. Braione, A. Cafaro, M. Magno, S. Albano
Elettroterapia Lorenz nei pazienti affetti da diabete tipo 1 e 2 complicato da neuropatia sensitiva e/o ACP sintomatiche
XIV Congresso Nazionale di Diabetologia
Catania Maggio 2003

M. Bevilacqua, M. Barrella, L. Baruffaldi, L. Foddis, R. Toscano, G. Baldi, E. Chebat, T. Vago, V. Righini, A. Zanella
Aumento del Vascular Endothelial Growth Factor con una stimolazione elettrica con alta variabilità in frequenza e durata (LORENZ). Uno studio clinico in pazienti affetti da diabete mellito tipo 2 con ischemia agli arti inferiori
XIV Congresso Nazionale di Diabetologia
Catania Maggio 2003

M. Bevilacqua, L. Baruffaldi, L. Foddis, R. Toscano, T. Vago
Increase of Vascular Endothelial Growth Factor by Electrical Stimulation with High Variability in Frequency and Amplitude.
A clinical study in non-insulin dependent diabetics with limb ischemia.
85th International Congress of Endocrine Society Philadelphia June 2003

M. Bevilacqua, L. Baruffaldi, L. Foddis, R. Toscano, T. Vago
Increase of Vascular Endothelial Growth Factor by Electrical Stimulation with High Variability in Frequency and Amplitude.
A clinical study in non-insulin dependent diabetics with limb ischemia.
International Congress of Cytochrome medicine
Manchester February 2003

M. Massari, A. Wiel Marin
Electrophysiological treatment of anal incontinence caused by chronic constipation
IX Congresso Nazionale delle Malattie Digestive
Firenze Febbraio 2003